THE FRENCH NUCLEAR EXPERIENCE IN THE POLISH NUCLEAR ENERGY CONTEXT

THE EPR REACTOR: SAFETY, LOCALIZATION, CONSTRUCTION, EXPERIENCE FEEDBACK

Patrick ZAK
Director Pre Development and Marketing
EDF New Nuclear Projects and Engineering

Poznan– ExpoPower – 23 April 2018
CONTENT

1. EDF Group company profile
2. The EPR reactor and the current projects
3. Hinkley Point C NPP project
4. Feedback from current EPR projects
EDF GROUP
KEY FIGURES OVERVIEW

EDF produces around 22% of the European Union’s electricity, primarily from nuclear power.
FRENCH NUCLEAR LANDSCAPE
SOCIO ECONOMICAL BENEFITS

- 1.2% of CO₂ Emissions for 4.3% of Worldwide GDP
- 80 gCO₂/kWh compared to 300 gCO₂/kWh in Europe
- 56% Energy Independence
- 438 TWh Nuclear per year
- 220,000 Employees
- 2,500 Companies
- 3rd Industrial Sector for Export
- 3% of CO₂ Emissions
- One of lowest price of electricity in Europe
- 438 TWh nuclear per year
- 80 gCO₂/kWh compared to 300 gCO₂/kWh in Europe
- 3% of CO₂ Emissions
- 220,000 Employees
- 2,500 Companies
- 3rd Industrial Sector for Export
DESIGNING, BUILDING, OPERATING AND MAINTAINING THE LARGEST FLEET WORLDWIDE

EDF : World’s leading nuclear power plant operator

- 58 reactors in France (63 GWe)
- 15 reactors in the UK (9GWe)
- ~2000 reactor-years of experience operating the French fleet

Operating organizations ranked by number of reactors in operation (2016)

EDF International experience on project delivery

5 ongoing EPR Units

- Flamanville 3, France
- Taishan 1, China
- Taishan 2, China
- HPC 1&2, United Kingdom

An EPR Owners Operators Group: EDF, EDF Energy, TNPJVC, TVO
CONTENT

1. EDF Group company profile

2. The EPR reactor and the current projects

3. Hinkley Point C NPP project

4. Feedback from current EPR projects
THE EPR REACTOR

1,650 MWe PWR

- Generation III+ PWR
- High power output (1,650 MWe)
- Plant efficiency 36%
- Evolutionary design (Konvoi / N4)
- Low global power generation costs
 - Fuel consumption reduced by up to 15%
 - 60 years of operation
 - Availability factor 91%
 - Improved flexibility to reduce OPEX
- Load following capability
- Reduced number of welds
- Maximized benefit from size effect
- Minimal environmental impact
- MOX Fuel capability
- Reactor being designed in collaboration with utilities and safety authorities
- EUR criteria compliant
- An outstanding safety level…
STATE OF THE ART IN TERMS OF SAFETY

Reduce the probability of a severe accident with core meltdown

Protect population and environment in case of severe accident

Protect against malevolent act (e.g. airplane crash)

Physical separation, diversity, and redundancy of critical components – 4 safety trains

Confined corium and radioactive products in the reactor (“core catcher”) – Deterministic approach

High structural resistance – Double shell containment
A DESIGN ALREADY ASSESSED AND LICENSED BY VARIOUS INDEPENDANT BODIES AND SAFETY AUTHORITIES, WORLDWIDE

Construction license granted in 4 countries
Design license started
In line with the safety objectives of the Western European Nuclear Regulators’ Association (WENRA)

A smoother licensing phase supported by experienced team involved in numerous licensing contexts
40 YEARS OF FRENCH KNOW HOW TRANSFER AND LOCAL INDUSTRY DEVELOPMENT

<table>
<thead>
<tr>
<th>Areas of support</th>
<th>Knowledge and learning sharing</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills development</td>
<td>40+ years of successful human capacity building guidance and cooperation with fellow countries since 1970’s.</td>
<td> </td>
</tr>
<tr>
<td>Localization</td>
<td>45y years of local industries development, both NPP (engineering, manufacturing, and construction) and fuel cycle – through technology transfer and skills development, including R&D support, to create high quality jobs locally.</td>
<td> </td>
</tr>
<tr>
<td>Education and training (all types)</td>
<td>55+ partnerships with top universities worldwide. set up of joint training centers.</td>
<td> </td>
</tr>
<tr>
<td>NPP operation</td>
<td>850+ trainees from foreign operators trained over the last 30 years.</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>346 reactors supported, out of the 435 in operation (i.e. 80% of nuclear global fleet), with products and services.</td>
<td> </td>
</tr>
</tbody>
</table>
FLAMANVILLE 3: THE EPR REFERENCE PLANT

- EPR Reference Plant
- First EPR reactor in France
- Largest Project in Northern Europe
- Power output: 1,650 MWe
- EDF as Owner & Operator

SCHEDULE

- **End 2018**
 - First fuel loading and start-up operations to begin

- **August 2017**
 - Cold Test
 - Nuclear circuit cleaning

- **September 2015**
 - New schedule

CURRENT STATUS

- **March 2016**
 - Welding of 1st Primary Circuit

- **End 2017**
 - Cold functional test

- **July 2018**
 - Hot functional test

- **2nd Quarter 2019**
 - Connection to the grid
TAISHAN 1 & 2: ACCELERATION IN THE EPR LEARNING CURVE

- The first two EPR reactors in China
- Power Output: 1,750 MW each
- EDF as co-Owner-Operator with renewed partnership
- Tropicalized to adapt to the country’s climate

July 2017
End of Hot Functional Tests

Second half of 2018
COD Unit #1

April 2018
First fuel loading

Second half of 2019
COD Unit #2
CONTENT

1. EDF Group company profile
2. The EPR reactor and the current projects
3. Hinkley Point C NPP project
4. Feedback from current EPR projects
HINKLEY POINT C 1&2: CONFIRMING EPR AS THE REFERENCE IN EUROPE

- First nuclear construction project in the UK in 30 years
- GDA certification process
- Reference plant EPR Flamanville 3
- Contract For Difference guarantying a fixed price of electricity for 35 years
- Partnership with CGN as co-owner
- Power output: 1,638 MWe each

CURRENT STATUS

- **October 2013**
 - UK Government agree Contracts For Difference for HPC

SCHEDULE

- **September 2016**
 - Final contracts signed

- **2019**
 - FCD Unit #1

- **2025**
 - COD Unit #1

- **2026**
 - COD Unit #2

- **March 2017**
 - First nuclear safety concrete successfully poured for power station galleries
HINKLEY POINT C
Key figures

- 3.2 GW power plant with two reactors
- 25,000 new job opportunities created during construction
- 9 million tonnes (approx) of CO₂ avoided each year, equivalent to roughly 2 million cars
- 7% of the UK's electricity
- £200m annual boost to regional economy during core construction
- 64% of the construction cost will be placed with UK businesses

- 6 million homes
HINKLEY POINT C - Scale of the Construction Site

- 3 Million Tonnes of Concrete
- 5.6 Million M^3 of earth to be moved
- 4000 km electrical cabling
- £40M injected in local economy during operation
- Over £4 Billion benefit to local economy during construction and operation
- 30% Local workforce

4D Model illustrating part of the nuclear island
HPC INSPIRING INDUSTRIAL COLLABORATION
CONTENT

1. EDF Group company profile
2. The EPR reactor and the current projects
3. Hinkley Point C NPP project
4. Feedback from current EPR projects
LESSONS IMPLEMENTED AT HPC

Configuration

- End of construction topographical surveys with data compared with PDMS model and results made available to all parties

Mechanical, Electrical and HVAC Erection

- Development of new contractual arrangements and collaborative one-team ways of working

Civil Construction

- 3D design of rebar and solving of embedment clashes before models frozen
- Use mock-ups to trial techniques, test arrangements and competencies, test interfaces
- Modular construction of rebar cages, floors, walls and pool liners

Data-centric Approach

- Development of a central electronic depository for all project information to support commissioning and operation
MEH INTEGRATION MODEL – THE CHALLENGE

Hinkley Point C:
- Construction schedule is challenging
- Scale and complexity is unique
- Delivery needs world-class productivity, room occupancy and daily progress rates
- Delivery needs a different way of working
 - New organisational and contractual arrangements
 - New methods, tools and systems being developed, including configuration capture by one consolidated 3D topographical survey
CONCLUSION

- EDF is a strong player on the world’s nuclear market – Operates the biggest fleet in the world

- The EPR is a robust design, EPR will keep the owner-operator on the safe side

- The EPR world wide fleet is being born

- Ongoing construction projects are getting to end, no project has been stopped

- EDF long standing experience as a nuclear operator guarantees that the phasing from construction to operation will be managed smoothly and efficiently (derisk of fuel loading clearance after construction)

- Improvement slope is a fact in all fields (engineering, fabrication, construction, PMO)

- Systematic lessons learned implementation in new project is industrialized – Implementation on the biggest construction site in Europe at Hinkley Point C

- The level of confidence regarding capability to deliver future projects on time and on budget is high

- Polish EPR will be the 7th and 8th a the EPR world series
DZIĘKUJĘ
PYTANIA?